
 

 

 

 

 

Automated Cryptogram Solving, Volume III 
Design Guide to Automatically Solve Almost All of the ACA Cipher Systems by Computer 

 

By SHMOO 

 

Volume III covers:  Important Preliminaries, Ragbaby, Grandpre, Compressocrat, Condi, Syllabary, 

Periodic Ciphers (including Vigenere, Variant, Beaufort, Gronsfeld, Auto Key, Running Key, Progressive 

Key, Interrupted Key, Slidefair, Portax, Gromark, Periodic Gromark, Homophonic, Numbered Key, 

Quagmire I, Quagmire II, Quagmire III, Quagmire IV, Phillips, Playfair, Seriated Playfair, Two-Square, Tri-

Squre, Four-Square, Bifid, Conjugated Matrix Bifid, Trifid, Twin Bifid, Twin Trifid, Digrafid, Headlines, 

Cryptarithms 

  



Important Preliminaries 
This volume assumes (realistically, requires) that the reader has read the Introduction and Simple 

Substitution Chapters in Volume I.  This text may be outright incomprehensible without that background. 

  



Chapter IX – Miscellaneous Substitutions 

Ragbaby Cipher 
Main Implementation:  Manual Solver with shift assist 

Implementation Issues:  Resists (so far) automatic solution, support for rarely seen 26 and 36 letter 

variants. 

Ragbaby is (so far) surprisingly resistant to automatic solution.  It might fall to a cipher word list strategy, 

but for the most part, the “vulnerability” is, like Tridigital, weak because it is basically just the word 

length.  Tips are pretty much always given and placing these give alphabet fragments. 

As they tend to initially appear in solvers, one gets multiple key fragments from the tip; they are 

incorrectly shifted against each other.  One can instruct the code to change the shifts and see what the 

results on the plaintext are for such shifts. 

The first order issue is to ensure the changed shifts are sound – that no letter appears above or below 

another one. 

Once all shifts are found, then they are implicitly merged and the resulting text can be examined.  This 

either leads to new letters (and new partial alphabets) or it leads to revision of some of the shifts or 

both. 

Ultimately, as text is added, eventually all the partial alphabets are merged and merged correctly.  At 

this point, the solution is largely or entirely revealed. 

Grandpre Cipher 
Main Implementation: Word list, keyword, with semi-accurate hill climb 

Implementation issues:  More manual than automatic, but available automation helps. 

The solution here is “mostly” manual, but a certain amount of auto-solving like function can really boost 

the speed of solution and give further entry to the text. 

Grandpre, in the ACA, is either an 8x8 matrix or a 10x10 matrix.  It is filled in with keywords horizontally 

and the first letter of each forms a keyword as well.  This restriction enables a certain amount of 

automation. 

After the tip is placed, words that might appear in the key square based on the revealed letters is 

collected.  These are tried recursively and (within recursion limits) the result texts are graded and 

shown.  Keep in mind that a decent fraction of the text may be “not assigned” and will end up with low 

tetragram scores. 

None the less, even though some of it is very wrong, useful plaintext fragments often appear. 

By telling the program to try certain keywords at certain key square positions, or adding fresh tip 

material when the plain text is revealed, a series of iterative runs usually produces the answer without 

too much trouble. 

  



Compressocrat 
Main Implementation:  Hill Climb with special Compressocrat Tetragram list. 

Implementation Issues: See Fractionated Morse, creating a special Compressocrat tetragram list. 

Compressocrat is surprisingly analogous to Fractionated Morse, including the idea of reducing it to a 

Patristocrat of sorts by enciphering the language source text in “the trivial alphabet” and collecting 

tetragrams for that. 

This despite the fact that it compresses the original plaintext a bit and does not reference Morse symbols 

at all. 

Read the Fractionated Morse for clarity – it should be easy to see how the concepts transfer. 

As with Fractionated Morse, this Patristocrat on the intermediate text means that the final plaintext is 

only seen at the very end of a successful hill climb. 

 

Condi 
Main Implementation:  Semi-solver, uses Cryptarithm concepts. Alternative: Wordlist, keywords. 

Implementation Issues:  Automatically generating a program from tip and input, supplementing the 

produced program. 

In the end, Condi is mostly about keyword recovery.  While the cipher appears simple, using and 

extending plaintext is surprisingly difficult. 

Thus, producing the alphabets with the keywords (even shifting them to be sure one got them all) is one 

approach that the author has tried.  But, again, a multi-word setup defeats it.  Moreover, in one instance, 

the author discovered that because the word list left off an obscure word, that it was only solved by luck 

– by a word that lead to a nearly identical keyword and yet even with only two letters different, the 

recovered text was far from complete.  Amazing the influence such a slight difference had on the text. 

This sort of thing has lead the author to do something so far unprecedented – abandon a potentially 

workable auto solver and go back to a manual approach. 

Condi has enough algebra in it that, with a tip, the enciphering and deciphering can be expressed as 

additions modulus 26.  That can be used to set the whole thing up “as if” it was a Cryptarithm, modulus 

26, and see what happens.  It is possible to finesse the “starting offset” in tip text to get the equations 

(see MATANZA’s article “Solving a Condi Crypt Using Algebra” in the May June 2012 issue of The 

Cryptogram). 

The author also has an approach that generates a by-hand program to solve cryptarithms.  This was 

incorporated into the manual scheme so that a manual cryptarithm solver is generated for the tip. 

That can be enough, but it often leads to too many trial solutions to manage.  However, as fly by on the 

output, observations can be made.  One can notice that letters (say, X and Y) are adjacent over and over 

again and so add the guessed equation: Y=X+1.  One can add in shrewd inequalities to the generated 

program such as E < 17 (probably true whether E is in the keyword or not) and W > 19 when W is 



suspected of not being in the keyword.  Be prepared to throw out some of these ideas; not all will be 

correct (e.g. W might be in the keyword, the keyword might be significantly shifted).  Enough right 

guesses will drastically reduce the number of possible keys, even without all 26 letters present. 

This sort of approach, while it takes a little time, has worked splendidly on recent ciphers. 

Another valuable idea is to grade the answers.  The actual answer, being a standard alphabet, is likely to 

have a lot of adjacent letters or near adjacent letters that aren’t part of the key.  So, give a bonus score 

for every time that has happened (one bonus for adjacent like JK, slightly less for a gap of one like JL) and 

sort the qualified answers.  This usually sifts the correct key (as far as it is known) near the top of the list. 

 

Syllabary 
Main Implementation:  Mostly, solver’s aid.  Can sometimes convert to Patristocrat 6x6. 

Implementation issues:  Unclear.  Research needed.  But the 10x10 matrix does not help. 

Failure Rate: High. 

To date, the author has limited success at best with this cipher.  The reader might be better placed to 

seek out what others have done with this cipher. 

The author has had some success with a process where the highest frequency syllabary number pairs 

are arbitrarily assigned to the letters A-Z.  But, the remaining numbers (however many there are; maybe 

as many as 40 or 45 distinct numbers) are arbitrarily smashed down and share the digits 0-9. 

This cipher, distorted though it is, is then fed to a special Patristorcrat solver that was created for 

Checkerboard 6x6 ciphers.  It sometimes can fail entirely.  But when it works, it suggests a decent set of 

plaintext to try, even given it doesn’t understand the multiple substitution taking place. 

 

 

  



Chapter X – Periodic Ciphers 
The Cryptogram publishes a great number of periodic ciphers, many are simply variants of each other 

(one so much so that we call it “Variant”). 

There are also elaborations and alterations that increase the solving difficulty. 

Classification and Commonalities 
There is value in exploring the similarities of these many types of cipher before discussing specific 

systems.  The most basic set of periodic ciphers:  

• Vigenere 

• Variant 

• Gronsfeld 

• Beaufort 

• Porta  

 

These can be solved polymorphically from a common core of code if desired. All that is needed is 

system-specific encipherment/decipherment.  They auto solve well. 

Many systems are elaborations that take each of the “main five” above as a base, but with some kind of 

twist: 

• Slidefair (Vigenere and Beaufort) 

• Auto key 

• Running Key 

• Progressive Key 

• Interrupted Key 

 

So, in their own way, these too are essentially generic and can be solved from a common core.  In some 

cases, the code is so fast that all of the above “basic set” can be all tried together and still get an 

intelligible answer from a solution list ordered by scores. 

There are some standalone ideas that also use one of the “main five” as a base or just go off on their 

own. 

• Portax (Porta variant) 

• Gromark (Gronsfeld) 

• Periodic Gromark (Gronsfeld) 

• Homophonic 

• Numbered Key 



 

Numbered Key is a difficult “solve”.  Running Key is a bit of a special case – it is a cipher that is just as 

hard for the legitimate receiver as the cryptanalyst – borders on an unfair problem, but it is still in the 

ACA’s bag of tricks. 

The most difficult to solve are the Quagmires – these are periodic ciphers with keyed alphabets.  As one 

“ascends” from Quagmire I through II and III and IV, one finds that the difficulties in auto solving them 

increases.  Quagmire IV is the subject of furious research and Quagmire III is marginal.   

Quagmires are distinguished by Roman Numerals and they represent the kind of keying system used.  K1 

keys the plaintext alphabet, K2 the ciphertext alphabet.  K3 uses the same keyword, shifted by the 

periodic key for both alphabets and K4 shifts two keyed alphabets against each other. 

 

Vigenere, Variant, Beaufort, Gronsfeld, Porta 
Main Technique:  Column matching or just Hill Climbing 

Implementation Issues:  Desirable to have a common core.  Keep the encipher/decipher routines handy 

as they may be reused elsewhere. 

The first job is to deduce the period if unknown.  Some use the Index of Coincidence; the author uses 

Kasiski.  One might have the period as an input parameter in case it is given or in case one wants to 

override what Kasiski says (if the period finding scheme suggests three, four, six and twelve, or even tries 

to solve all four, one might just want to say “twelve” and skip the rest). 

Column Matching is a semi-exhaustion method.   

1. The column layout is known once the period is set (including the last partial row).   

2. Take the columns pair-wise and try out all 26*26 keys for each column pair.   

3. Grade each column by deciphering with the current key pair, using Digram frequencies to grade 

(take the log of the raw frequency as usual). 

4. If there is an odd period, grade the last column using Monogram frequencies. 

5. Depending on the period, keep the N best scoring key pair fragments for that given column.  N is 

selected to be computationally reasonable.  If N is too small, there is risk that the solution will 

sometimes be lost or only partial.  The author sets N no lower than 5 but no higher than 10.  N 

would be set based on the current period and the empirical computation cost observed. 

6. For each saved column key fragment, stitch them all together (recursion works well here) and 

then tetragram grade the result. 

a. Suppose the period was six and only the best two key fragments were saved.  Suppose 

further the top keys for each column were: 

AY ST ED 

BE QM ST 

 

b. Then the keys tried would be:  AYSTED, AYSTST, AYQMED, AYQMST, BESTED, BESTST, 

BEQMED, BEQMST and they would be stored in order of highest tetragram score. 



The alternative is to do a straight-up hill climb.  The author hasn’t coded that for these, but it should 

work well. 

AutoKey (Vigenere, Variant, Beaufort, Porta) 
Main Technique:  Column matching or just Hill Climbing for Porta 

Implementation Issues:  Desirable to have a common core for Autokey that shares code with the Main 

core above.  Porta is more practical to hill climb for this one. 

 

Running Key (Vigenere, Variant, Beaufort, Porta) 
Main Technique:  None, unsolved problem 

Implementation Issues:  Encipherment actually destroys information 

Failure Rate: No known computer solution 

Running Key is a bit of a cheat.  One basically takes one half of the cipher and uses it as the key to 

encipher the other; the resulting ciphertext is half as long. 

There is no distinction between the cryptanalyst and the legitimate receiver.  This is pure puzzle and (for 

the author, at least) an unsolved problem precisely because it destroys information. 

Possible solution ideas:  It could be possible to look at all pairing if “key” and “plain” in the appropriate 

tableau and, based on the monoalphabetic frequencies, make a predictive pairing for each “cipher” 

letter.  One could then take the top several candidate pairs and begin recursively constructing semi-

plausible text, using tetragram or even digram grading to construct likely text.  That might feed a manual 

process.  The problem here is a combinatorial explosion.  Suppose we used the top five pairings?  One 

would only be able to run such a process in ten character chunks; to do more explodes the computation 

costs.  It is uncertain that tetragram scoring would be effective in such a short string. 

But, so far, this looks like a puzzle cipher that favors manual approaches in the end.  Considering its low 

frequency of appearance, the author has not yet invested in solutions; this one is still manual. 

 

Progressive Key 
Main Technique:  Hill Climbing  

Implementation Issues:  Solves like the others with only the added work to try (and then adjust for) the 

progression index.  A little slower, but not much. 

 

Interrupted Key 
Main Technique:  Like Vigenere or by hand 

Implementation Issues:  This one depends on whether the con constructor is serious about the 

“interrupted” concept to make the key randomly restart.  A contributor can make one by using by two or 



three copies of the key, most of which are incomplete, which allows regular Vigenere family constructor 

code to be used.  In that case, it becomes a Periodic with a larger key than usual. 

Failure Rate:  High if it is truly an “interrupted” key 

This is another cipher that is almost as much work for the legitimate receiver as the cryptanalyst.  

However, it should still decipher fairly easily for the receiver compared to others of this class. 

 

  



Slidefair (Vigenere, Beaufort) 
Main Technique:  Hill Climbing  

Implementation Issues:  Not really much like Porta in the end, but accessing Periodic common functions 

is still nice.  More aligned with Portax. 

Slidefair is extremely vulnerable and fast.  So much so, the author’s solver solves all three systems, 

including Variant.  It is proabably only necessary to solve Vigenere and Beaufort as Vigenere and Variant 

solve identically with the keys being variants of each other. 

 

Portax 
Main Technique:  Hill Climbing  

Implementation Issues:  Not really much like Porta in the end, but accessing Periodic common functions 

is still nice.  More aligned with Slidefair. 

Portax can have successful tip dragging because of a serious weakness: If the first letter of a plaintext 

alphabet is from the letters N through Z, the resulting encipherment is independent of the key.  There 

are also limits substitutes, which further constrains tip placement.  However, in the author’s own code, 

he has not bothered with this as it is pretty vulnerable to hill climbing.  See JA73 Novice Notes for more. 

 

Gromark 
Main Technique: Hill Climbing 

Implementation Issues:  Straightforward 

Gromark uses a mixed key, but that is irrelevant for computer solution which is presented with the 

pseudo random key anyway.  The running key is an interesting, Fibonacci-based method, but as it is 

always given, it is no problem for the computer to reconstruct.  Gromark is at the edge of what paper 

and pencil can do, but is right down the middle of the highway for computer solution. 

 

Periodic Gromark 
Main Technique:  Hill Climbing of dual keys 

Implementation Issues:  Author’s code is incomplete, needs investigation. 

Failure Rate:  Fairly high at present. 

The correct concept probably alternates the hill climbing of the regular alphabetic key and the period 

key. 

  



Homophonic 
Main Technique: Key Exhaustion 

Implementation Issues:  None 

While this is exhaustion and not with a Factorial Key Set but exhaustively performs 25 to the 4th power 

executions, that is still only 390625 total iterations, quite tractable on a modern computer.  Accordingly, 

this is one of the most vulnerable periodic ciphers. 

 

Numbered Key 
Main Technique: Hill Climbing with Duplicate Migration 

Implementation Issues:  Tuning, effectiveness 

Failure Rate:  Fairly high as it is not clear how to successfully migrate the multiple substitutes in or out or 

how and whether to adjust tetragram scores for the reality of multiple substitutes. 

The cipher, by design, allows some number of plaintext letters to have duplicate enciphering choices.  

How many can be determined from analyzing the text.  In addition, it is possible to designate some 

number of the rare letters (J, X, W, Z, Q) as unused in the actual plaintext and so allow those to migrate 

out of the active solution array. 

 

The Quagmires  (Quagmire I, Quagmire II, Quagmire III, Quagmire IV) 
Generically, these are the same cipher, but the cipher uses keywords in the plaintext alphabet, the 

ciphertext alphabet, or both.  These differences can show up in coding.  The solving difficulty varies.  

Some existing members are a little ahead of the author for this one and research continues, especially 

on the Quagmire IV.  Because the code varies a bit between them, and these differences can show up in 

solver code, each is discussed separately as needed. 

While the author’s code is seldom this good, some ACA members have auto solvers for these variants, 

particularly Quagmire I, which is slightly easier.  Ask around about the state of the art.  These ciphers are 

undergoing active research by members.  If Quagmire IV is ever auto solved, its techniques can be easily 

adapted for the others as they are simpler. 

It goes without saying that for all four, getting the period (or a small number of them to try) is the first 

objective.  Everything else proceeds from there. 

Quagmire I, Quagmire II 
Main Technique: Place tip, hill climbing, process manual commands 

Implementation Issues:  Full auto solve in one step is rare.  Tip is extremely useful.  Quag I may be auto 

solved soon.  Quag IV may fall to a Wordlist method. 

Failure Rate:  Today, this is a hand solve.  But, the partial automation can make it much easier.  The 

combination of semi-automation and hand solving is very effective for these. 



While these may ultimately be computer solves, today, we are on the cusp of that, especially including 

the author’s understanding.  So, the emphasis will be on by-hand aids.  But, watch this space. 

For Quagmire I and II, one alphabet is unkeyed, the other is keyed.  Provide the fixed, unkeyed alphabet 

once and the keyed alphabet for each position of the unknown keyword (eight alphabets if the period is 

eight). 

For Quagmire I and Quagmire II, one alphabet is unkeyed.  Make that alphabet the top, singular one.  

Then, as one places the tip, put the partial fragments under the fixed letter in the appropriate row for 

the period found (once the period is known, we know exactly what letters go with what alphabet). 

Now, extend the alphabets.  If there is a fragment like this:  E..S  and another S.T  (where a “.” Means a 

skipped letter position), merge them and replicate them to each other.  Thus, there is E..S.T in both 

alphabets.  Further, if any of E, S, or T appear in the other alphabets, they now get E..S.T in those as well. 

What’s more, any letters in those other alphabets can all be added to each other.  So, if there is an 

alphabet somewhere with DE in it, the whole fragment extends to DE..S.T in all relevant alphabets.  

These alphabets are shifted relative to each other (unless they share a common key letter) and those 

shifts need to be preserved. 

Once the extensions are done, we select the alphabet with the most letters in it.  We then fill in the 

missing letters randomly and propagate these to all the alphabets.  This will imply that alphabets with no 

letters in common have so-and-so a shifting relationship.  This will often be wrong, but we try it anyway. 

We decipher, score, and decide whether this is an acceptable solution, despite the likelihood of errors.  

We repeat the process N times as a hill climber of sorts and quit. 

 

We also may be able to make out the keyword in the repeated alphabets; that will solve immediately. 

The best answers may, despite the keys being incorrect at places, show usable plaintext for further work.  

These can be added (in the author’s implementation) to a list of “by hand” functions that precede the 

next invocation and hill climb.  Eventually, the true keyword or enough text appears to finish the answer. 

Note that for Quagmire I, the fact that the shifted alphabets are all unkeyed is an additional weakness.  

JARROD (John Smith) is in the final tuning stages of what may prove an auto solver for Quag I.  ANCHISES 

also had a method, but it is not clear it works at ACA lengths. 

 

Quagmire III 
Main Technique: Place tip, hill climbing, process manual commands 

Implementation Issues:  Full auto solve in one step is nonexistent.  Tip is required for the author’s 

method; it aborts without one. 

Failure Rate:  Ultimately, this is a hand solve. 

The extension rules are different, more limited, and more complex for Quagmire III.  See Practical 

Cryptanalysis for a description.  In the author’s implementation, the plaintext alphabet is held fixed, but 

that is arbitrary.  It will also fail, in almost all cases, to reveal the keyword. 



There are also a couple of new ideas.  If there is no shift in a Quag III (that is, the plaintext and ciphertext 

are one-to-one) this will show up if even one deciphered letter is placed.  If one sees (for instance) the 

letter L in some alphabet directly below plaintext L, then using Quag III rules means that all the letters 

are that way (A=A, B=B, etc.).  This is something that should be avoided, but just as in real world 

cryptography, these weaknesses are sometimes there.  One gets no progress on the keyword when this 

happens, but the compensation is that every character in the column is substituted by itself. 

Another item is what might be called an identity merge.  Suppose that one alphabet has a J under 

plaintext M and a second alphabet also has a J under plaintext M?  That means that while there is a shift, 

the two alphabets are identical.  So, all letters from one of them may be copied to the other, extending 

both. 

 

Quagmire IV 
Main Technique:  None 

Implementation Issues:  Fully hand solve if at all.  But see BION’s ideas. 

The author, except by hand, does not know how to automate this one. 

Extensions for Quag IV are difficult and frankly don’t help as much, even with longer tips, because there 

is comparatively so little that can be inferred.  Still, it might be possible to come up with a long running 

auto solver that does things like take a word list, try a new keyword alphabet for one (say, PT), select the 

best score from that whatever the CT alphabet is, then fix the best PT alphabet and run all the available 

CT alphabets.  After alternating a few times, perhaps a solution might appear?  This is an unknown area, 

but members are trying things out.  BION, in the November-December 2022 Cryptogram, suggests just 

such an approach, with a clever scheme for grading partial decrypts.  The author encourages coders to 

try it; it is just possible this is a solved problem, unknown to the author. 

  



Chapter XI – Philips, Playfair, Seriated Playfair, Two-square, Tri-square, 

and Four-square 
The main thing these share in common is first, a 5x5 Polybius square, and except for Phillips, they 

represent some form of digraphic substitution.  It turns out that even these minor enhancements over 

periodics or simple substitution tend to cause auto solving to be more difficult. 

Phillips 
Main Technique: Hill Climbing with Simulated Annealing 

Implementation issues:  None, per se.  But why is simulated annealing, and its tuning, needed? 

Phillips is a frustrating cipher, so far, for this auto solver.  The code works, but why is it so hard to write?  

Simulated annealing is a lot of extra tuning and the author finds the coding obscure even by AI 

standards.   

Yet, the cipher is a keyword block transposed by a fixed scheme into eight known alternatives (given a 

“base” block) and so should in theory cause no special difficulties.  In fact, some of the eight are 

functionally identical.  It should be an elaborate checkerboard.  The author is not sure, but perhaps it is 

the relatively short texts that cause this dilemma.  Someone can write a simpler solver, but in any case, 

the scheme with simulated annealing works. 

Playfair 
Main Technique: Hill Climbing with Simulated Annealing 

Implementation Issues:  Swapping rows and columns is sometimes better than individual letter swaps. 

Playfair motivated this author to finally get a workable simulated annealing program working. The author 

found it a significant challenge to get his own version working.   

There is this paper:  https://www.apprendre-en-ligne.net/crypto/bibliotheque/meta/Playfair-

compression.pdf   . . .which, upon serious study, lead the author to a working implementation. 

Also of interest in the C++ version by ANCHISES (Michel J. Cowan).  His article is in Cryptologia and tends 

to be behind paywalls.  

Either can instruct the reader, in detail, about how to create a solver for this cipher that works.  The 

author finds that on any method, tuning the simulated annealing is the hard part.  There may also be 

unstated dependencies between the tetragram grading (almost always included in program samples) 

and the “temperature” function of the annealing.   

Change-and-try adjustment of the temperature array may be required if one uses one’s own tetragrams 

and this is extensive work.  The motivation for that extra work is to be able to drop in the “other” 

tetragram lists in other languages (presumably, collected at similar magnitudes) and so have it work in all 

ACA languages. 

 

  

https://www.apprendre-en-ligne.net/crypto/bibliotheque/meta/Playfair-compression.pdf
https://www.apprendre-en-ligne.net/crypto/bibliotheque/meta/Playfair-compression.pdf


Seriated Playfair 
Main Technique: Hill Climbing with Simulated Annealing 

Implementation issues:  Not hard after basic Playfair is working.  

The author found that for some reason, Seriated Playfair is more vulnerable than Playfair. 

 

Two-square, Tri-square, and Four-Square 
Main Technique: Solving aid 

Implementation issues:  Multiple Polybius squares complicates hill climbing.  Keyword searches may 

work, but is also extensive as routes have to be considered. 

Toward an Auto Solver 
The author, for the moment, has despaired of writing an auto solver for these.  However, it is imaginable 

that something could work along the lines of BION’s solver Wordlist solver for Quagmire IV. 

The technique would be: 

1. Generate two random Polybius squares to start.  Call them “left” and “right”.  In Four-square, 

these are usually designated II and III; in Two-square the ACA and You calls them 1 and 2. 

2. Consult the keyword list and construct every Polybius square for each keyword including all 

popular routes.  Put each of these into the left square, holding the right square constant.  

Decipher and grade.  Keep the best left square. 

3. Consult the keyword list and again construct all Polybius squares using all routes.  Hold the best 

left square from step 2 as constant.  Try all the new right squares, grade them, and keep the best 

right square as the new right square. 

4. Repeat 2 and 3 some relatively small number of times or until both “best squares” do no change.  

This is the answer 

It is imaginable that one could shotgun this approach, though it is already computationally extravagant, 

but it is imaginable that the initial state of the right square could result in a different square pair at the 

end. 

Even if this technique ends up taking several hours, one might find it worthwhile because they can be a 

handful by hand.  It would be nice to wake up in the morning from an overnight run and see a solution. 

This is more debatable as an idea for Tri-square because three squares are involved.  Moreover, the 

“lower right” square, being at the center of each triplet, is “a little more equal” than the other squares. 

Whether this helps or hurts remains to be seen.  However, it may also mean that the right method does 

the upper right, then lower right, then lower left, then again the lower right and repeats this block of 

four instead of the more obvious three.  That is much more computationally intense, but if it improves 

the solution rate, it is obviously worth it. 

All of this is, of course, typically defeated by multi-word keys like ILIKECODE, which is one of the reason 

the author has not yet tried it.  Even if only one of the squares is multi-word, defeat seems likely. 



Issues for the Solving Aid 
A serious solving aid still has significant content compared to most.  Particularly, there needs to be code 

that takes a placed tip and fills in an expanded edition of the squares for two-square and tri-square such 

that false decodes are not created.  The code must be further willing, as it proceeds, to merge rows and 

columns as new material is added.  Experience shows that these sparse squares may have to have 

dimensions as great as 20x20. 

There also needs to be the manual ability to add text extensions from the human and for the rows and 

columns to be appropriately swapped or merged so the human can reconstruct the keywords. 

Throughout, the code must be on the lookout for invalid mergers (where merging of a row means some 

particular letter over-writes an existing one) and reject these. 

Foursquare, by contrast, is easier.  The squares do not expand, but contradictions still have to be 

detected. 

  



Chapter XII – Bifid, Trifid Ciphers, and Digrafid 

Bifid 
Main Implementation: Hill Climbing with Simulated Annealing 

Implementation Issues:  Can solve without a tip.  Forgiving Simulated Annealing. 

The author finds that even a mediocre Simulated Annealing works well for Bifid for some reason.  Bifid 

may well be the first cipher one codes up with Simulated Annealing. 

The Chi Square test (see Appendix C) is used to calculate the period when it is not known.  The period is 

often given for these, however.  See Practical Cryptanalysis II for a discussion of how to drag tips over the 

ciphertext (there are differences for even and odd periods). 

 

Conjugated Matrix Bifid 
The author has not worked on this cipher except to conclude that it is more than a trivial simple 

substitution on top of a regular Bifid. 

 

Trifid 
Main Implementation: Hill Climbing with Simulated Annealing 

Implementation Issues:  Solves much better with a tip; virtually required 

 

If one can code up Bifid, a Trifid is not that much different (the Chi Square is already done).  However, 

just that small added complexity versus Bifid seems to mean that a tip is required as opposed to optional 

as it is on Bifid. 

 

Twin Bifid or Trifid 
Main Implementation:  Especially for Bifid, ignore the “twin” aspect and solve individually 

Implementation Issues:  Does not really work for Trifid without a true tip; at least not presently. 

Failure rate:  For Bifid, just solving them separately without a tip works at least two thirds of the time.  A 

solution for either creates a fair amount of placed tip for the other one. 

Fortunately, Twin Trifids are not common – Twin Bifids are more popular with ACA constructors. 

 

 

 

 



Digrafid 
Main Implementation: Hill Climbing with Simulated Annealing 

Implementation Issues:  Tip is very significant for this cipher.  More successful with it. 

Failure Rate: Can fail without a tip. 

This is somewhat akin to Bifid or Trifid and so a lot of the same discussion applies, despite the fact that it 

doesn’t “look much” like Bifid or Trifid. 

 

 

  



Chapter XIII – Headline Ciphers and Cryptarithms 
Headlines and Cryptarithms do not – entirely – fit into tidy auto solving categories.  In many respects, 

both actively resist auto solving, to varying degrees.  The author can and does bring substantial auto 

solving function to bear.  But, there is a long way to go before we get to “input cipher output answer” in 

far too many cases for these. 

Headline Cipher (“Headlines”) 
Main Technique:  Combination of Patristocrat solvers and hand-built key reconstruction 

Implementation Issues:  Ciphertext is allowed to be short and “unfair” (abbreviations, proper names) 

Headlines are a past time invented in the bowels of the NSA and somehow became known outside of the 

agency.  So, it does not really correspond to normal ACA ideas about ciphers and solutions. 

It is five Aristocrats, plaintext from newspaper headlines, each encoding with a K3M key.  It is the same 

key, except the shift between the “base” K3M standard alphabet has a different shift for each text (well, 

there may be a repeat shift, but it is rare).  It can be related to Quagmire III with a mixed key.  The shift is 

denoted by a keyword, called the setting, which appears when you line up the solved alphabets in the 

correct alignment. 

To claim a solution, one must do more than recover the text (which can often be done standalone).  One 

must recover at least two of:    

1. The keyword in the standard alphabet (here a K3M) 

2. The “setting” (the word representing the shift between the five K3M alphabets) and 

3. The “hat” which represents the keyword used to scramble the K3M. 

For the author, solution consists of these steps: 

1. Solve the five “Aristocrats. 

a. Using regular automated means as much as possible, until at least three or four of the 

headlines are solved.  That can usually be managed in several “rounds”.  The first 

“round” is often garbage, but one might see a word or some almost-word and try that as 

a tip.  Manual means if all else fails. 

b. Once those are solved, recover any one of the 26 letter chains (see classic K3 keyword 

recovery elsewhere) by combining chains from the three or four solutions.  One might 

automate the initial chains from the solved alphabets, but the author does the mergers 

manually. 

c. “Decimate” the 26 letter chain to uncover the other 26 shifted alphabets. 

d. With the other alphabets known, spot a single CT/PT pair and use that to get the right 

shift to solve the remaining ciphers.  It can be trial and error if necessary. 

2. With all the alphabets and their shifts known, stack them up in order (PT over CT or, if that fails, 

CT over PT) and figure out what the “setting” is (some vertical line will reveal it). 

3. Use the UVWXYZ method (see below) to figure out the keyword.  This is at least as much art as 

science.  



4. Once the keyword is known or guessed: 

a.  try out various methods the cipher might have been “blocked” for mixing, looking for 

short fragments in common with any of the 26 alphabets. 

b. Once you have spotted short fragments in a given alphabet (two or three letters, 

typically), see if it is the entire alphabet (it will be out of order).  This confirms the 

keyword recovered in 3 is correct. 

5. Optionally, use the transposition information recovered in 4 to recover the hat (the author 

usually does not bother as there is enough to claim a solution). 

 

The UVWXYZ Method 
This is written up in the Cryptogram also, but the concept is simple:  It is likely that most of UVWXYZ are 

not in the keyword.  If that is mistaken, it will usually be obvious which are in the key later on. 

The following presumes that this will all be handled by code to assist in the work. 

For each of the 26 alphabets, treat (arbitrarily) the UVWXYZ fragment as the PT alphabet and, for each 

shifted alphabet, put the corresponding letters from the current shifted alphabet above UVWXYZ.  Note 

that this entirely disregards the alphabet mixing.  In fact, it works around it.  This is the point in the end. 

Examine all shifted alphabets for interesting and plausible texts.  Maybe it will be IJKLOP.  Maybe it will 

be EPUBLIC (a likely keyword fragment).  Don’t worry about the implausible ones – there will be many of 

those. 

The result might also be IJXLOP.  That X suggests W might be in the keyword.  Drop it and see if it works 

better with UVXYZ. 

Take that interesting text and put it in the PT row and put the same alphabet’s CT versions above it.  This 

sometimes works and sometimes doesn’t. 

Add and subtract from the UVWXYZ fragment and from the second text.  This again is trial and error and 

there may be a point where it stops working.  Eventually, though, the keyword is guessed even if 

incomplete.  Sometimes, the extensions that ought to work do not work.  This often means it is wrong, 

but it also sometimes means nothing.  Perhaps the irregularity of the transposition matters even here.  

Whatever the reason, these fragments do not always contain the whole alphabet.  But it can be enough 

to spot a keyword.  The next step will double check and confirm the keyword even if parts of it were 

never seen under UVWXYZ’s ideas. 

Proving the Keyword 
To prove the keyword, proceed as follows: 

1. From before, collect all the decimations. 

2. Try out the would-be keyword in a variety of blocks, creating what sooner or later will be the 

actual keyblock. 

3. Determine which in #2 is correct by examining each would-be keyblock for short bits of key – 

three characters are about right – that occur in one of the decimated alphabets.   The length of 

three is chosen because many of the blocks end up with two or three letters in them.  



Remember, the actual alphabet is transposed, so other things may be adjacent to the matching 

parts. 

4. Once a three-character candidate is detected, see if all the fragments, in any order, can be found 

in the rest of the cipher alphabet.  If it can, you have proved the keyword and even know how it 

was transposed.   

 

Cryptarithms 
Main Technique:  Recursive solving of constructed additions; custom code 

Implementation Issues: Varies by the problem.  Many fall outside of the general recursion, requiring 

custom code.  Persistence will always get a solution, however. 

Cryptarithms are a class of puzzle and not quite a true cipher, though members of the ACA do not really 

care.  They are fun puzzles and have existed in organized form in the ACA since no later than 1938. 

The basic concept is that they are simple substitutions of letters over the ten digits of the regular 

decimal numbers (with occasional forays into bases between 9 and 16).  The solution involves math, 

logic, and sometimes a little exhaustion, to come up with what the constructor guaranteed to be the sole 

mathematically sound solution. 

Types of Cryptarithms 
Over the years, many things have been published.  Currently popular are: 

1. Square roots 

2. Cube roots 

3. Division 

4. Multiplication 

5. Addition 

6. Subtraction 

7. Equations (a pair of Additions; a pair of Subtractions; one of each) 

8. Sudokus 

A wide variety of infrequently or one-off items such as Magic Squares or special problems of various 

sorts may be seen. 

A great fraction of the problems have several additions and subtractions in them.  Consider this division 

problem from November-December 2023: 

C-5. Division.  (One word, 0-9)   by SHMOO 

CAUGHT / ALE = ACA; - CHUI= ILLH; - IERR = CRCT; - CHUI UUR 

This sets up as: 

         ACA 
ALE ) CAUGHT 
    - CHUI 
      ---- 
       ILLH 



    -  IERR 
       ---- 
        CRCT 
    -   CHUI 
        ---- 
         UUR 

General Recursive Method 
With the clever introduction of a “guard digit” (a special character treated as zero, but never allowed to 

be substituted), one can turn most of this into an array of additions, with the bottom row the sum.  For 

this ND 2023 C-5 problem it becomes: 

ØØUURØØCRC0ØILL 

ØCHUIØIERRØCHUI 

ØCRCTØILLHØCAUG 

Note that Ø is representing that special character with the Norwegian slashed “O”.  It could be any 

character at all, but this choice has explanatory power.  This 3xN array can be fed to a unified, recursive 

solver that proceeds up to down and right to left, preserving carries. 

The recursion process should note whether the next position is a number or a letter of the alphabet.   

If it is a letter of the alphabet, it is replaced with the next available unassigned number.  Then, the entire 

puzzle is scanned and wherever that letter appears, the current number takes its place. One then 

recurses to the next letter down.   

If it is already assigned (that is, it is a number or a guard digit) and not the bottom of the column, 

recursion continues. 

If one reaches the bottom of the column, then the substituted values on top should be used to create 

the sum, including any carry from a prior column.  If the contents of the bottom of the column are a 

letter, and if the number represented by the sum is not assigned, assign it, propagate it as before, and 

recurse, moving to the top of the next column on the left.   

If the number represented by the sum is already assigned to something else, this level of recursion has 

failed and the computation returns to the prior level to unassign the last letter, where found and all 

others “to the left” and reassign it to something else, reassigning leftward with the new value (if all 

assignments have been made, roll back farther). 

If the number represented by the sum agrees with an already assigned value, continue the recursion 

with the next column to the left. 

Note that guard digits are never assigned but always treated as if they were zero.  Note further that with 

proper construction, a carry into a column of guard digits, indicates a failed sum even if the number at 

the bottom of the guard digit column to its right is correct.  Sometimes, more than one guard digit is 

needed to make things like up properly. 

Note that guard digits allow all additions and subtractions to be reduced to a single addition and solved 

recursively.  Note further that cube roots, square roots, and divisions can be recast as additions.  If there 



is enough material in the additions, it will solve without considering the multiplications involved in the 

arithmetic. 

There are thus three outcomes:   

1. There are multiple solutions usually because some of the letters are not assigned.  Solution will 

involve investigation of the divisions and multiplications themselves. 

2. There is no solution.  Everything is in the array assigned, but everything is assigned without 

consuming all letters. 

3. There is a single solution.  This is the most common and best outcome.   If this happens, the 

solution is complete. 

In #1 and #2, one can investigate (for instance) the dividend and the divisor for further restrictions on 

the sums in question.  One might even write code that used the available multiplications in their entirety 

or in part to further restrict the available letter values and, perhaps, provide enough added restraint to 

enable a solution to emerge.  Square and cube roots can be helpful as well, because the left most value 

of the root is seen squared or cubed, respectively, in the first subtracted item. 

Custom Code 
If the problem cannot be reduced to the general addition array as above, or supplemented readily to 

finish the answer, another way out is to write custom code.  This can be done in any language; Python is 

a good choice because its list handling is easy and intuitive, but any language can be made to work. 

Basic functions are: 

1. Fixed assignment.  Maybe a letter is known to be one value.  Common candidates are 0, 1, and 9. 

2. Range assignment.  Iteratively, all values from 0 to 9 are assigned.  If it is known the number 

cannot be zero, iterate from 1 to 9. 

3. Sum a list, remembering the carry.  In Python, it might be expressed as:   (C,carry2) = 

addList((U,U,carry1))    Python can return lists and the syntax shown enables a list of two results 

(the sum and the carry) to be split into its constituent parts. 

4. “IF” logic.  After this:  (R2,carry3) = addList((U,H,carry2)) . . .one might want to know if R2 is 

equal to the already assigned R and whether carry3 was zero as it should be in this particular 

problem.  The concept is that a failed check should basically be a “continue” which skips all logic 

“beneath” it. 

5. ALLDIFFERENT.  A list of already assigned variables, provided as a list, could be checked to ensure 

each are different as required by the Cryptarithm rules.  As in “IF”, all future execution “beneath” 

the ALLDIFFERENT call that returned false would be skipped. 

This technique, even if naively done (e.g. right to left from whatever the problem gives) makes it quite 

easy to set up and perform the additions.  One then can write supplemental logic to produce the 

multiplications or divisions outright. 

In square roots or cube roots, one can go farther and make assignments based on assigning the root 

from 1 to 9 and then squaring or cubing it and assigning all the result letters accordingly.  That will get 

three or four letters of the bat; some combinations might fail at once.  In this root, for instance, 

DA’FF’OD’IL gives root BULB.  Moreover, “DS” is what is subtracted from the DA part.  So, B*B would be 



(10*D)+S, exactly.  If B*B is less than 10, it is immediately eliminated.  Survivors assign three letters 

before any other work, a sizable reduction in computation. 

Even with only the IF and ALLDIFFERENT logic, the code tends to be quite exclusionary and may execute 

far faster than naïve expectations because it skips a lot of the deeper logic. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 


